安徽皖金泵阀制造有限公司

首页泵阀新闻 分析齿轮与齿轮箱振动噪声原因与如何控制解决。

分析齿轮与齿轮箱振动噪声原因与如何控制解决。

作者:  来源:  发布时间:2018-06-19


1、齿轮箱的振动

    齿轮的振动由轴系传到齿轮箱,激励箱体振动,从而辐射出噪声。另外,齿轮在箱内振动的辐射声激励箱体,使箱体形成二次辐射噪声,这类噪声大部在中低频范围内。齿轮箱体本身的振动也直接产生辐射声。

2、齿轮的振动

    在啮合过程中,轮齿先由一点接触而扩展到线接触,或一次实现线接触,使得接触力大小、方向改变,产生机械冲击振动,从而辐射出噪声。这类噪声呈现高频冲击的形式,其典型的齿轮振动时程曲线。

     轮齿啮合时不断变化的啮合力,既激发齿轮的强烈振动,即各个轮齿的响应很大,也激发了齿轮箱箱体较弱的振动。通常认为齿轮产生噪声的主要原因是轮齿之间的相对位移。这类噪声源产生的噪声可以用付氏变换法把噪声表示为稳定频率的分量的集合。

3、齿轮轮毂的振动

齿轮传递扭矩首先从轴传至轮毂,由轮毂传递到轮齿,再由主动轮轮齿传递到被动轮轮毂和轴系。在传递过程中,由于受到轴向激励力的作用,齿轮轮毂产生轴向振动。另外,由于啮合力的作用,轮毂也会产生横向和沿周向的振动。

4、轴承及轴承座的振动

   齿轮系统通过轴系安置于轴承及其轴承座上,由于齿轮本体的轴向和周向振动必引起轴承支承系统的振动,相反,外界干扰力(如螺旋桨的轴承力)也可能通过轴承传递给齿轮系统。

5、轴承力激励

     如果齿轮传递扭矩为船用螺旋桨推力(作用在推力轴承上)与扭矩,则螺旋桨在不均匀流场中产生的非定常轴向力或扭矩通过轴系传递到轴承,由轴承传递给齿轮,对齿轮产生不稳定的激励,此即为轴承力激励。由此种激励使齿轮产生振动辐射出噪声,这种噪声与轴承力的激励密切相关,另外,由于齿轮轮齿的弹性原因,齿轮在传递动力时,后两对轮齿啮合时的齿对数只有一对齿啮合的1/2~2/3。因此,当主动轴旋转时,对应于齿对数的变化,从动齿轮发生与旋转转速变化相同的振动,从而辐射出噪声,这也是主要噪声源之一。

6、滑油喷注产生的噪声

    一种齿宽较大的直齿齿轮,在啮入端吸入过多的滑油,这些滑油滞留于齿根间隙中而无法迅速从端部排出形成“困油现象”。困油现象发生在两个啮合齿的接触部位形成的一个封闭容积内。这种封闭容积在齿轮转动时会产生容积变化。由于滑油是不可压缩液体(压缩性极小,体积模量为114×109),即使很小的容积变化都会使齿轮轴上的附加载荷发生周期性的剧烈变化,使齿轮激励振动而产生噪声。另外,在容积增大时,压力即迅速减少,从而使得轮齿间迅速减压造成“空蚀”,使齿轮激发出强烈的高频振动,同时辐射出噪声。与此同时,高压油从齿端部高速喷射,射流冲击齿轮箱箱体也会引发啮合频率激励而产生齿频噪声及其倍频噪声。

7、齿轮啮合激励产生的噪声

    齿轮的轮齿在啮合时因传动误差产生交变力,在交变力作用下产生线性及扭转响应,使齿轮产生振动辐射出噪声。这是一种主要的噪声源,接触力变化越大,则齿轮相应的振动响应越大。另外,齿轮的周节差产生的由复杂的或调制频率及其倍频组成的噪声,含有重复的基频(轴频),频率很低。由于周节差产生了不规则的脉冲序列。这种脉冲序列包括了众多的频率成份,但还不能认为是宽带随机噪声。在众多频率成份中,由于脱啮后轮齿重新啮合时的冲击,所产生的噪声是明显的。在一般情况下,啮合振动能够产生轴频的任何一个倍频上的激励,这种激励传递到齿轮箱引发箱体共振时产生明显的噪声,尤其当箱体的固有频率较低,而啮合频率很高时,很可能在某倍频下产生箱体共振。键槽或花键槽在啮合力作用下,使得齿轮和花键之间间隙产生无规则的变化,从而产生与周节差引发的相似的噪声。

8、高次谐波的产生

    齿轮在稳定旋转过程中受到重合系数等许多因素影响,在轮齿上所传递的力是随时间变化的周期性函数。由于机械加工或磨损引起轮齿偏离实际情况的偏差,如均匀分布的磨损产生啮合振动及其高阶啮合频率,但不引起边带。但非均匀分布的缺陷,在周期性脉冲力作用下产生低阶谐波频率,并由于调幅或调频作用而产生边带。节圆相对于旋转中心存在偏差,产生调幅。不均匀齿距或转速变化产生调频,即引起啮合频率的变化。若以表示轴频,表示啮合频率,则实际频率(Hz),其中n,m为任意整数。n表示啮合频率的高阶谐波频率;m表示以轴频,为调制频率的边带簇数。

齿轮振动噪声特性

调制特性

调制特性在齿轮振动噪声中广泛存在。当齿轮存在局部缺陷时,或在轮齿上产生疤痕、蚀坑等缺陷,此时会在频谱图上给出一个由周期性脉冲激励引起的调幅,出现众多的低频边带。由故障与缺陷而引起振动能量增大,大多数反映在边带分量上。如果缺陷向领近轮齿扩展会引起更大的、更密集的以啮合频率为中心频率的边带。

振动噪声的控制措施

1、提高加工、装配精度

齿轮的齿形、齿面精确加工精心装配,减小齿面缺陷可以大大减小齿轮啮合时的振动冲击。此外齿的形状,齿轮轮齿的排列、优化都能大幅度降低齿轮噪声。如直齿改为斜齿,或采用非对称齿形。根据啮合时的冲击振动除了受到压力角影响之外,主要与齿数有关。增加齿轮齿数可采用双模数不对称的渐开线齿形。齿数增加可使冲击幅值下降,但应注意齿轮的加工精度。据研究该法可使噪声下降3dB左右。

2、改善润滑方法

齿轮润滑时,一般情况下,齿轮系统部分置于油液中,在齿轮旋转时,油液由啮入方向进入两啮合齿的空间,从而使油液滞留于齿间。当齿间容积减小并又逐渐增大时,液压由小变大再减小,从而产生液压脉动现象。在压力变化过程中,由于每一个循环的后期载荷突然减小,而呈现“阶跃”式变化,因而造成轮齿的冲击而使齿轮辐射出噪声。同时在卸载时,因压力突降,在油液中的气泡迅速扩张,形成的空泡爆裂,对轮齿也产生冲击,针对此种噪声,改善润滑方法是有效的,可使滑油由啮出方向进入轮齿进行润滑而不从啮入方向进油,这可大大改善齿轮的振动与噪声。

3、采用隔振及阻尼减振装置

    对振动与噪声的控制除了在设计与制造时优化齿轮结构参数,如齿形、重合系数、压力角等外,可以在齿轮轮体以及支承系统采用隔振措施。如在齿轮端面附加一个阻尼环或镶嵌高阻尼材料以便吸收齿轮的啮合振动能量,以减少齿轮辐射声。与此同时,可在齿轮轴系端部及轴承部位接装适当的减振装置,如套在轴头部位的阻尼减振套(垫)。

    齿轮的振动噪声主要来源于齿的缺陷、磨损以及安装偏差、加工误差等,因此提高加工、安装精度,选用适当齿形可降低噪声。齿轮缺陷、磨损等运转不平衡及啮合频率、机械振动频率与轴转频缺陷等对齿轮啮合振动的振幅和频率产生的调制是普遍存在的。采用隔振方法降噪是一种行之有效的方法。


热点推荐

氯离子腐蚀环境选材 带液位器的排污泵如何接线 变频控制柜中变频器受到干扰的原因有哪些 不锈钢304、304L、316、316L的区别在哪 变频控制柜要安装电流互感器? 阀门执行机构选型原理 水锤是个什么东西,如何消除避免? Q345材料简介 什么是轴承箱骨架油封? 阀门知识介绍